Formula/Table Card for Weiss's Introductory Statistics, 9/e Larry R. Griffey

Notation

n = sample size

= sample mean

sample stdev

 $Q_i = j$ th quartile

N = population size

 μ = population mean

 σ = population stdev

d = paired difference

 $\hat{p} = \text{sample proportion}$

p = population proportion

O = observed frequency

E = expected frequency

Chapter 3 Descriptive Measures

• Sample mean:
$$\bar{x} = \frac{\sum x_i}{n}$$

• Range: Range = Max - Min
• Sample standard deviation: Also S² = 5772 (EFX)

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}} \quad \text{or} \quad s = \sqrt{\frac{\sum x_i^2 - (\sum x_i)^2/n}{n - 1}}$$

Interquartile range: IQR = Q₃ - Q₁

* Lower limit =
$$Q_1 - 1.5 \cdot IQR$$
, Upper limit = $Q_3 + 1.5 \cdot IQR$

• Population mean (mean of a variable):
$$\mu = \frac{\sum x_i}{N}$$

Population standard deviation (standard deviation of a variable):

$$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$$
 or $\sigma = \sqrt{\frac{\sum x_i^2}{N} - \mu^2}$

• Standardized variable: $z = \frac{x - \mu}{z}$

Chapter 4 Probability Concepts

Probability for equally likely outcomes:

$$P(E) = \frac{f}{N}$$

where f denotes the number of ways event E can occur and N denotes the total number of outcomes possible.

Special addition rule:

 $P(A \text{ or } B \text{ or } C \text{ or } \cdots) = P(A) + P(B) + P(C) + \cdots$ (A, B, C, ... mutually exclusive)

Complementation rule: P(E) = 1 - P(not E)

General addition rule: P(A or B) = P(A) + P(B) - P(A & B)

Conditional probability rule: $P(B|A) = \frac{P(A \& B)}{P(A)}$

General multiplication rule: $P(A \& B) = P(A) \cdot P(B | A)$

· Special multiplication rule:

$$P(A \& B \& C \& \cdots) = P(A) \cdot P(B) \cdot P(C) \cdots$$

(A, B, C, ... independent)

Rule of total probability:

$$P(B) = \sum_{i=1}^{k} P(A_i) \cdot P(B \mid A_i)$$

 $(A_1, A_2, ..., A_k$ mutually exclusive and exhaustive)

Bayes's rule:

$$P(A_i \mid B) = \frac{P(A_i) \cdot P(B \mid A_i)}{\sum_{j=1}^{k} P(A_j) \cdot P(B \mid A_j)}$$

 $(A_1, A_2, \ldots, A_k$ mutually exclusive and exhaustive)

• Factorial: $k! = k(k-1) \cdots 2 \cdot 1$

• Permutations rule: ${}_{m}P_{r} = \frac{m!}{(m-r)!}$

Special permutations rule: _mP_m = m!

• Combinations rule: ${}_{m}C_{r} = \frac{m!}{r!(m-r)!}$

• Number of possible samples: ${}_{N}C_{n} = \frac{N!}{n!(N-n)!}$

Chapter 5 Discrete Random Variables

• Mean of a discrete random variable X: $\mu = \sum x P(X = x)$

Standard deviation of a discrete random variable X:

$$\sigma = \sqrt{\sum (x - \mu)^2 P(X = x)}$$
 or $\sigma = \sqrt{\sum x^2 P(X = x) - \mu^2}$

• Factorial: $k! = k(k-1) \cdots 2 \cdot 1$

Binomial coefficient: $\binom{n}{x} = \frac{n!}{x!(n-x)!}$

· Binomial probability formula:

$$P(X=x) = \binom{n}{x} p^x (1-p)^{n-x}$$

Chapter 6 The Normal Distribution

where n denotes the number of trials and p denotes the success probability.

Mean of a binomial random variable: $\mu = np$

Standard deviation of a binomial random variable:

$$\sigma = \sqrt{np(1-p)}$$

• Poisson probability formula: $P(X = x) = e^{-\lambda} \frac{\lambda^2}{x!}$

• Mean of a Poisson random variable: $\mu = \lambda$

Standard deviation of a Poisson random variable: $\sigma = \sqrt{\lambda}$

Formula/Table Card for Weiss's Introductory Statistics, 9/e Larry R. Griffey

Chapter 7 The Sampling Distribution of the Sample Mean

• Mean of the variable \bar{x} : $\mu_{\bar{x}} = \mu$

• Standard deviation of the variable \tilde{x} : $\sigma_{\tilde{x}} = \sigma/\sqrt{n}$

Chapter 8 Confidence Intervals for One Population Mean

• Standardized version of the variable \bar{x} :

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

• z-interval for μ (σ known, normal population or large sample):

$$\bar{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

- Margin of error for the estimate of μ : $E = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$
- Sample size for estimating μ:

$$n = \left(\frac{z_{\alpha/2} \cdot \sigma}{E}\right)^2$$

rounded up to the nearest whole number.

• Studentized version of the variable \bar{x} :

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

• t-interval for μ (σ unknown, normal population or large sample):

$$\bar{x} \pm t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$

with df = n - 1.

Chapter 9 Hypothesis Tests for One Population Mean

• z-test statistic for H_0 : $\mu = \mu_0$ (σ known, normal population or large sample):

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

• *t*-test statistic for H_0 : $\mu = \mu_0$ (σ unknown, normal population or large sample):

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

with df = n - 1.

• Symmetry property of a Wilcoxon signed-rank distribution:

$$W_{1-A} = n(n+1)/2 - W_A$$

• Wilcoxon signed-rank test statistic for H_0 : $\mu = \mu_0$ (symmetric population):

W = sum of the positive ranks

Chapter 10 Inferences for Two Population Means

• Pooled sample standard deviation:

$$s_{\rm p} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

• Pooled t-test statistic for H_0 : $\mu_1 = \mu_2$ (independent samples, normal populations or large samples, and equal population standard deviations):

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{(1/n_1) + (1/n_2)}}$$

with df = $n_1 + n_2 - 2$.

• Pooled t-interval for $\mu_1 - \mu_2$ (independent samples, normal populations or large samples, and equal population standard deviations):

$$(\bar{x}_1 - \bar{x}_2) \pm t_{\alpha/2} \cdot s_p \sqrt{(1/n_1) + (1/n_2)}$$

with df = $n_1 + n_2 - 2$.

Degrees of freedom for nonpooled t-procedures:

$$\Delta = \frac{\left[(s_1^2/n_1) + (s_2^2/n_2) \right]^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$$

rounded down to the nearest integer.

• Nonpooled t-test statistic for H_0 : $\mu_1 = \mu_2$ (independent samples, and normal populations or large samples):

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{(s_1^2/n_1) + (s_2^2/n_2)}}$$

with $df = \Delta$.

 Nonpooled t-interval for μ₁ - μ₂ (independent samples, and normal populations or large samples):

$$(\bar{x}_1 - \bar{x}_2) \pm t_{\alpha/2} \cdot \sqrt{(s_1^2/n_1) + (s_2^2/n_2)}$$

with $df = \Delta$.

• Symmetry property of a Mann-Whitney distribution:

$$M_{1-A} = n_1(n_1 + n_2 + 1) - M_A$$

• Mann-Whitney test statistic for H_0 : $\mu_1 = \mu_2$ (independent samples and same-shape populations):

M = sum of the ranks for sample data from Population 1

• Paired *t*-test statistic for H_0 : $\mu_1 = \mu_2$ (paired sample, and normal differences or large sample):

$$t = \frac{\overline{d}}{s_d/\sqrt{n}}$$

with df = n - 1.

Formula/Table Card for Weiss's Introductory Statistics, 9/e Larry R. Griffey

• Paired *i*-interval for $\mu_1 - \mu_2$ (paired sample, and normal differences or large sample):

$$\overline{d} \pm t_{\alpha/2} \cdot \frac{s_d}{\sqrt{n}}$$

with df = n - 1.

Paired Wilcoxon signed-rank test statistic for H_0 : $\mu_1 = \mu_2$ (paired sample and symmetric differences):

W = sum of the positive ranks

Chapter 14 Descriptive Methods in Regression and Correlation

$$S_{xx} = \sum (x_i - \bar{x})^2 = \sum x_i^2 - (\sum x_i)^2 / n$$

$$S_{xy} = \sum (x_i - \bar{x})(y_i - \bar{y}) = \sum x_i y_i - (\sum x_i)(\sum y_i) / n$$

$$S_{yy} = \sum (y_i - \bar{y})^2 = \sum y_i^2 - (\sum y_i)^2 / n$$

• Regression equation: $\hat{y} = b_0 + b_1 x$, where

$$b_1 = \frac{S_{xy}}{S_{xx}}$$
 and $b_0 = \frac{1}{n}(\Sigma y_l - b_1 \Sigma x_l) = \bar{y} - b_1 \bar{x}$

• Total sum of squares: $SST = \sum (y_l - \bar{y})^2 = S_{yy}$

- Regression sum of squares: $SSR = \sum (\hat{y}_i \overline{y})^2 = S_{xy}^2/S_{xx}$
- Error sum of squares: $SSE = \sum (y_l \hat{y}_l)^2 = S_{yy} S_{xy}^2/S_{xx}$
- Regression identity: SST = SSR + SSE
- Coefficient of determination: $r^2 = \frac{SSR}{SST}$
- Linear correlation coefficient:

$$r = \frac{\frac{1}{n-1}\Sigma(x_i - \overline{x})(y_i - \overline{y})}{s_x s_y} \quad \text{or} \quad r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$

Chapter 16 Analysis of Variance (ANOVA)

· Notation in one-way ANOVA:

k = number of populations

n = total number of observations

 \overline{x} = mean of all *n* observations

 $n_j = \text{size of sample from Population } j$

 \bar{x}_i = mean of sample from Population j

 s_i^2 = variance of sample from Population j

 $T_I = \text{sum of sample data from Population}$

Defining formulas for sums of squares in one-way ANOVA:

$$SST = \sum (x_i - \bar{x})^2$$

$$SSTR = \sum n_j (\bar{x}_j - \bar{x})^2$$

$$SSE = \sum (n_i - 1)s_i^2$$

- One-way ANOVA identity: SST = SSTR + SSE
- Computing formulas for sums of squares in one-way ANOVA:

$$SST = \sum x_i^2 - (\sum x_i)^2 / n$$

$$SSTR = \sum (T_j^2 / n_j) - (\sum x_i)^2 / n$$

$$SSE = SST - SSTR$$

Mean squares in one-way ANOVA:

$$MSTR = \frac{SSTR}{k-1}$$
 $MSE = \frac{SSE}{n-k}$

 Test statistic for one-way ANOVA (independent samples, normal populations, and equal population standard deviations):

$$F = \frac{MSTR}{MSE}$$

with df =
$$(k-1, n-k)$$
.

 Confidence interval for μ_i - μ_j in the Tukey multiple-comparison method (independent samples, normal populations, and equal population standard deviations):

$$(\bar{x}_i - \bar{x}_j) \pm \frac{q_\alpha}{\sqrt{2}} \cdot s \sqrt{(1/n_i) + (1/n_j)}$$

where $s = \sqrt{MSE}$ and q_{α} is obtained for a q-curve with parameters k and n - k.

 Test statistic for a Kruskal-Wallis test (independent samples, same-shape populations, all sample sizes 5 or greater):

$$H = \frac{SSTR}{SST/(n-1)} \quad \text{or} \quad H = \frac{12}{n(n+1)} \sum_{j=1}^{k} \frac{R_j^2}{n_j} - 3(n+1)$$

where SSTR and SST are computed for the ranks of the data, and R_j denotes the sum of the ranks for the sample data from Population j. H has approximately a chi-square distribution with df = k - 1.

Additional Formulas:

* Sample Mean:

$$\overline{x} = \frac{\sum x}{n}$$
 or $\overline{x} = \frac{\sum fx}{n}$ where $n = \sum f$

* Sample Variance:

$$s^{2} = \frac{\sum x^{2} - \frac{\left(\sum x\right)^{2}}{n}}{n-1} \quad \text{or} \quad s^{2} = \frac{\sum fx^{2} - \frac{\left(\sum fx\right)^{2}}{n}}{n-1}$$

* Sample Standard Deviation:
$$s = \sqrt{s^2}$$

* Empirical Rule:

Approximately 68% of the data is within 1 std. dev. of the mean. Approximately 95% of the data is within 2 std. dev. of the mean. Approximately 99.7% of the data is within 3 std. dev. of the mean.

* Chebyshev's rule:

at least $1 - \frac{1}{k^2}$ of the data is within k std. dev. of the mean.

* sample z-score for x: $Z = \frac{x - \overline{x}}{s}$